Electrochemical detection of aqueous Ag+ based on Ag+-assisted ligation reaction

نویسندگان

  • Peng Miao
  • Kun Han
  • Bidou Wang
  • Gangyin Luo
  • Peng Wang
  • Mingli Chen
  • Yuguo Tang
چکیده

In this work, a novel strategy to fabricate a highly sensitive and selective biosensor for the detection of Ag(+) is proposed. Two DNA probes are designed and modified on a gold electrode surface by gold-sulfur chemistry and hybridization. In the presence of Ag(+), cytosine-Ag(+)-cytosine composite forms and facilitates the ligation event on the electrode surface, which can block the release of electrochemical signals labeled on one of the two DNA probes during denaturation process. Ag(+) can be sensitively detected with the detection limit of 0.1 nM, which is much lower than the toxicity level defined by U.S. Environmental Protection Agency. This biosensor can easily distinguish Ag(+) from other interfering ions and the performances in real water samples are also satisfactory. Moreover, the two DNA probes are designed to contain the recognition sequences of a nicking endonuclease, and the ligated DNA can thus be cleaved at the original site. Therefore, the electrode can be regenerated, which allows the biosensor to be reused for additional tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Facile and Green Biosynthesis of Silver Nanostructures by Aqueous Extract of Suaeda Acuminata after Microwave Assisted Extraction

In the present study, a simple, efficient and fast synthetic strategy was reported for the green biosynthesis of silver nanostructures (i.e. nanoroads and nanoparticles) by the extract of Suaeda Acuminata plant, without any catalyst, template or surfactant. Aqueous extracts were obtained by maceration and microwave assisted extraction (MAE) methods. In MAE procedure, the effec...

متن کامل

Rapid and sensitive electrochemical detection of DNA with Silver nanoparticle dispersed poly (9, 9-dioctylfluorene-ran-phenylene) nanocomposites

In this study a sensitive electrochemical sensor for the detection of E.coli has been developed using silver nanoparticle (Ag) embedded poly(9,9-dioctylfluorene-ran-phenylene) (CFP) nanocomposite as a conductive platform and DNA hybridization technique. The new polymer was synthesized from 9,9-dioctylfluorene and 1,3-dichlorobenzene and biphenyl through Friedel Crafts alkylation reacti...

متن کامل

Electrochemical monitoring of colloidal silver nanowires in aqueous samples.

Silver nanowires (NWs) are increasingly utilized in technological materials and consumer products, but an effective analytical technique is not yet available to measure their concentration in the environment. Here, we present an electrochemical method to quantify Ag NWs suspended in aqueous solution. Using linear sweep voltammetry, the Ag NWs are identified by the peak potential while their con...

متن کامل

Sensitive electrochemical detection of copper ions based on the copper(II) ion assisted etching of Au@Ag nanoparticles.

A new sensitive electrochemical sensor for the detection of copper ions based on the copper ion assisted etching of Au@Ag nanoparticles was developed in this work. Since copper ions could greatly catalyze the etching process of the silver shell of Au@Ag nanoparticles in the presence of thiosulfate solutions, leading to an obvious decrease of the linear sweep voltammetry (LSV) signals of silver,...

متن کامل

The Ag+-G interaction inhibits the electrocatalytic oxidation of guanine--a novel mechanism for Ag+ detection.

The heavy metal ions-nucleobases interaction is an important research topic in environmental and biochemical analysis. The presence of the silver ion (Ag(+)) may influence the formation of oxidation intermediate and the electrocatalytic oxidation activity of guanine (G), since Ag(+) can interact with guanine at the binding sites which are involved in the electrocatalytic oxidation reaction of g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015